TABLE OF CONTENTS

Introduction..1
Product Overview...1
Job Set-Up..1
Surface Preparation...1
Primer Installation...2
Basecoat Installation - Horizontal..2-3
Wall Installation - Vertical..3
Topcoat Installation..3-4
Inspection...4
Final Curing Time..4
Safety..4

Published technical data, instructions, and pricing are subject to change without notice. Contact your Tnemec technical representative for current technical data, instructions, and pricing. Warranty information: The service life of Tnemec’s coatings will vary. For warranty, limitation of seller’s liability, and product information, please refer to Tnemec’s Product Data Sheets at www.tnemec.com or contact your Tnemec Technical Representative. 02/2020
1.0 INTRODUCTION

The purpose of this guide is to acquaint applicators with the basic information necessary for properly ordering, storing and installing Tnemec’s 60 Mil Vinester Broadcast System. Prior to starting work, please read this entire guide carefully. If you have questions, contact your Tnemec representative or call +1-866-216-3400. It is important that you obtain answers to any questions before work begins.

Also, reference the project specifications and compare them with this guide and the product data sheet. Resolve any inconsistencies prior to starting work.

This application guide cannot cover every issue that may be encountered in the field. If issues arise that are not addressed in this guide or the product data sheet, please contact your Tnemec representative or call 1-816-483-3400 for assistance.

2.0 PRODUCT OVERVIEW

The following contains information on the core components of the products used in this system.

2.1 SERIES 1415 SYSTEM

Series 1415 Vinester Broadcast System is trowel or squeegee-applied. The system results in a nominal or no less than 60 mils dry film thickness (DFT) when applied on horizontal surfaces and 30 mils when applied on vertical surfaces.

Series 1415 is a versatile selection for many secondary containment and process floors, best for caustic and high-pH applications, and when used as the base material for silica-free systems. Optionally, the system may be trowel-applied by replacing the broadcast aggregate with an appropriate Tnemec Bulking Powder, such as Series 211-9111, 211-9215 or 211-9106.

2.2 MATERIAL OVERVIEW

- Primer: Series 1402 ProPolymer
- Basecoat & Mortar Coat: Series 1415-900 Vinester
- Aggregate/Broadcast: 20/40 Sand (typically)
- Bulking Additive (mortar): Series 211-911 Bulking Powder
- Topcoat: Series 1415-900 Vinester with 1400 Color Pack

2.3 SYSTEM OVERVIEW

![Series 1415 Topcoat & Series 211-9111 Bulking Powder
20/40 Sand Aggregate
Series 1415 Basecoat
Series 1402 Primer
Existing Concrete
Prepared Concrete](image)

3.0 JOB SET-UP

Prior to starting installation, please note the following:

- Itemize all materials ordered from Tnemec.
- Establish surface preparation requirements.
- Ensure all equipment is readily available and in working order.
- Set-up a mixing area clearly designated at least 50 feet away from heat, sparks, open flame, welding, or other sources of ignition.
- Communicate the installation, safety procedures, and requirements with all persons involved.

4.0 SURFACE PREPARATION

4.1 PREPARATION OF CONCRETE

Allow new cast-in-place concrete to cure a minimum of 28 days at 75°F (24°C). Verify concrete dryness in accordance with ASTM F 1869 “Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride” (moisture vapor transmission should not exceed three pounds per 1,000 square feet in a 24 hour period), F 2170 “Standard Test Method for Determining Relative Humidity in Concrete using in situ Probes” (relative humidity should not exceed 80%), or D 4263 “Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method” (no moisture present). Prepare concrete surfaces in accordance with NACE No. 6/SSPC-SP13 Joint Surface Preparation Standards and ICRI Technical Guidelines. Abrasive blast, shot-blast, water jet or mechanically abrade concrete surfaces to remove laitance, curing compounds, hardeners, sealers and other contaminants and to provide a minimum ICRI-CSP 5 surface profile. Large cracks, voids and other surface imperfections should be filled with a recommended filler or surfacer.

4.2 PREPARATION OF STEEL

Immersion Service/Severe Exposure/Elevated Temperatures: SSPC SP5/ NACE No.1 White Metal Blast Cleaning or ISO Sa3 Blast Cleaning to Visually Clean with a minimum angular anchor profile of 3.0 mils (75 microns) is required.

Non-Immersion Service: SSPC SP10/NACE No. 2 Near White Metal Blast Cleaning or ISO Sa 2 ½ Very Thorough Blast Cleaning with a minimum angular anchor profile of 3.0 mils (75 microns) is required.

4.3 MISCELLANEOUS METALS

Any miscellaneous metals or pipe penetrations scheduled to receive the coating system should be properly prepared in accordance with SSPC-SP10/NACE No. 2 Near-White Metal Blast Cleaning or SSPC-SP16 Brush-off Blast Cleaning of Non-Ferrous Metals, minimum 3.0 mils (75 microns) angular anchor profile.

4.4 TERMINATIONS

When the coating system is not scheduled to provide a monolithic surface, terminations must be built into the system. Examples include leading-edge sawcut terminations or overlapping onto pipes or other miscellaneous metals. Consult your Tnemec Representative for more information.
5.0 PRIMER INSTALLATION

5.1 SERIES 1402
The recommended primer for Series 1415 Vinester Broadcast System is Series 1402 ProPolymer, an elevated temperature vinyl ester coating. Contact Tnemec Technical Services to discuss alternate primers.

5.2 SERIES 1402 CURING TIME

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>IMMERSION SERVICE</th>
<th>MIN. RECOAT</th>
<th>MAX. RECOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F (32°C)</td>
<td>24 Hours</td>
<td>2 Hours</td>
<td>24 Hours</td>
</tr>
<tr>
<td>70°F (21°C)</td>
<td>24 Hours</td>
<td>2 Hours</td>
<td>24 Hours</td>
</tr>
</tbody>
</table>

Note: If more than 24 hours has elapsed between coats, Series 1402 surface must be mechanically abraded before topcoating.

5.3 SERIES 1402 PACKAGING

<table>
<thead>
<tr>
<th>KIT SIZE</th>
<th>PART A</th>
<th>PART B</th>
<th>YIELD (MIXED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>5 gallon pail</td>
<td>Pint bottle</td>
<td>5 gallons (18.9 L)</td>
</tr>
<tr>
<td>Small</td>
<td>1 gallon can</td>
<td>4 oz bottle</td>
<td>1 gallons (3.7 L)</td>
</tr>
</tbody>
</table>

5.4 SERIES 1402 COVERAGE RATES

<table>
<thead>
<tr>
<th>DRY MILS (MICRONS)</th>
<th>SQ. FT./GAL (M²/GAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 - 6.0 (50 - 152)</td>
<td>682 - 227 (63 - 21)</td>
</tr>
</tbody>
</table>

5.5 SERIES 1402 MIXING
Power mix contents of Part A (base) thoroughly, making sure no pigment remains on the bottom of the can. Add Series 1402 Part B (catalyst) slowly to the Part A while under agitation. Ensure that all Part B is blended with Part A by scraping the pail walls with a flexible spatula. Continue to agitate until thoroughly mixed. Care should be exercised so as not to entrap air in the mixed material. Do not use mixed material beyond pot life limits.

5.6 SERIES 1402 THINNING
Do not thin.

5.7 SERIES 1402 SPRAY LIFE & POT LIFE

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>SPRAY LIFE</th>
<th>POT LIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>75°F (24°C)</td>
<td>25 Minutes</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>

Note: At higher temperatures, pot life will decrease (use caution in spray equipment). In hot weather, material should be cooled to 65°F to 80°F (18°C to 27°C) prior to mixing and application to improve workability and avoid shortened pot life.

5.8 SERIES 1402 MATERIAL & STORAGE TEMPERATURE
Minimum storage temperature is 40°F (4°C) and maximum is 80°F (26°C). Prior to application, the material temperature should be between 60°F and 90°F (16°C and 32°C). It is suggested the material be stored at this temperature at least 48 hours prior to use.

Temperatures will affect workability. Cool temperatures increase viscosity and decrease workability. Warm temperatures will decrease viscosity and shorten pot life.

5.9 SERIES 1402 EQUIPMENT
Roller: Use 1/4” or 3/8” (6.5 mm to 9.5 mm) synthetic woven nap roller cover.
Brush: Recommended for small areas only. Use high quality natural or synthetic bristle brushes.

5.10 SERIES 1402 SURFACE TEMPERATURE
Minimum surface temperature is 60°F (16°C) and maximum is 90°F (32°C). The surface should be dry and at least 5°F (3°C) above the dew point. Coating will not cure below the minimum surface temperature.

5.11 SERIES 1402 CLEANUP
Clean and purge lines immediately after use with MEK.

6.0 BASECOAT INSTALLATION - HORIZONTAL

6.1 SERIES 1415 VINESTER
The base coat for Series 1415 Vinester Broadcast System is Series 1415 Vinester, an epoxy vinyl ester lining. Reference the following charts for Series 1415 compositional specifics. Contact your Tnemec Representative with any additional questions.

6.2 SERIES 1415 VINESTER CURING TIME

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>TO RECOAT</th>
<th>IMMERSION</th>
<th>MAXIMUM RECOAT‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F (32°C)</td>
<td>3 Hours</td>
<td>20 Hours</td>
<td>3 Days</td>
</tr>
<tr>
<td>75°F (24°C)</td>
<td>4 Hours</td>
<td>24 Hours</td>
<td>4 Days</td>
</tr>
<tr>
<td>50°F (10°C)</td>
<td>12 Hours</td>
<td>4 Days</td>
<td>5 Days</td>
</tr>
</tbody>
</table>

‡ *Note*: Certain service applications may require elevated temperature and/or longer cure times for placing in service.

6.3 SERIES 1415 PACKAGING

<table>
<thead>
<tr>
<th>KIT SIZE</th>
<th>PART A (PARTIALLY FILLED)</th>
<th>PART B (PARTIALLY FILLED)</th>
<th>YIELD (MIXED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>5 gallon pail</td>
<td>Pint bottle</td>
<td>4.76 gallons (18 L)</td>
</tr>
<tr>
<td>Small</td>
<td>1 gallon can</td>
<td>4 oz bottle</td>
<td>0.95 gallons (3.6 L)</td>
</tr>
</tbody>
</table>

6.4 SERIES 1415 COVERAGE RATES

<table>
<thead>
<tr>
<th>DRY MILS (MICRONS)</th>
<th>SQ. FT./GAL (M²/GAL)</th>
<th>SERIES 1400 COLORANTS</th>
<th>BULKING ADDITIVES*</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0 (510)</td>
<td>68 - 340 (6.3 - 31.6)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Saturant

<table>
<thead>
<tr>
<th>DRY MILS (MICRONS)</th>
<th>SQ. FT./GAL (M²/GAL)</th>
<th>SERIES 1400 COLORANTS</th>
<th>BULKING ADDITIVES*</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0 (510)</td>
<td>68 - 340 (6.3 - 31.6)</td>
<td>Half Pint - Quart</td>
<td>See 1415 Product Data Sheet for information</td>
</tr>
</tbody>
</table>

Pigmented
6.5 SERIES 1415 VINESTER MIXING
The basecoat is generally applied in Clear. If desired, a Series 1400 Color Pack may be added to the Part A to have a pigmented basecoat. If used, Series 1400 Color Pack shall be added and fully mixed into Series 1415 Part A until a uniform color is achieved. Series 1402 Part B is then blended into the Part A.

6.6 SERIES 1415 VINESTER BASECOAT APPLICATION
The catalyzed Series 1415 should be immediately transferred to the surface and spread using a flat squeegee or roller to level the topping to 25 to 30 mils wet film thickness (WFT) for a coverage rate of 45-55 square feet per gallon.

6.7 SERIES 1415 VINESTER BROADCAST APPLICATION
Immediately broadcast selected aggregate into the wet Series 1415 resin until no dry spots are visible. Typically, 20/40 mesh sand will require 1 to 1.5 pounds per square foot.

6.8 SERIES 1415 VINESTER BASECOAT CURING
Allow the system to cure. Once fully cured, sweep up all excess aggregate. If appropriate, proceed to vertical application. Otherwise, proceed directly to 8.0 Topcoat Installation.

6.9 SERIES 1415 THINNING
Do not thin.

6.10 SERIES 1415 POT LIFE

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>POT LIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>75°F (24°C)</td>
<td>45 Minutes</td>
</tr>
</tbody>
</table>

6.11 SERIES 1415 MATERIAL & STORAGE TEMPERATURE
Minimum storage temperature is 35°F (2°C) and maximum is 75°F (24°C). Prior to application, the material temperature should be between 60°F and 90°F (16°C and 32°C). It is suggested the material be stored at this temperature at least 48 hours prior to use. Temperatures will affect workability. Cool temperatures increase viscosity and decrease workability. Warm temperatures will decrease viscosity and shorten pot life.

6.12 SERIES 1415 SURFACE TEMPERATURE
Minimum surface temperature is 60°F (16°C) and maximum is 90°F (32°C). The surface should be dry and at least 5°F (3°C) above the dew point. Coating won’t cure below the minimum surface temperature. To minimize outgassing, concrete temperature should be stabilized or in a descending temperature mode and the concrete primed with a suitable epoxy primer.

6.13 SERIES 1415 CLEANUP
Clean all equipment and tools immediately after use with MEK.
8.6 SERIES 1415 MATERIAL & STORAGE TEMPERATURE
Minimum storage temperature is 35°F (2°C) and maximum is 75°F (24°C). Prior to application, the material temperature should be between 60°F and 90°F (16°C and 32°C). It is suggested the material be stored at this temperature at least 48 hours prior to use.

Temperatures will affect workability. Cool temperatures increase viscosity and decrease workability. Warm temperatures will decrease viscosity and shorten pot life.

8.7 SERIES 1415 SURFACE TEMPERATURE
Minimum surface temperature is 60°F (16°C) and maximum is 90°F (32°C). The surface should be dry and at least 5°F (3°C) above the dew point. Coating won’t cure below the minimum surface temperature.

8.8 SERIES 1415 CLEANUP
Clean all equipment and tools immediately after use with MEK.

9.0 INSPECTION
Examine the application for any air bubbles or blisters. If present, they must be cut out and repaired. Refer to Tnemec Technical Bulletin 98-11 for additional information.

High voltage discontinuity (spark) testing may be used to determine the presence and number of discontinuities in the nonconductive Vinester 60 Mil Broadcast System applied to a conductive surface. All high voltage discontinuity (spark) testing shall be performed in accordance with NACE SP0188 and the procedure’s outlines therein.

Coatings shall be applied and allowed to cure within the parameters of the corresponding product data sheets. Sufficient curing time of the coating system shall be allowed prior to conducting a holiday test, as indicated by the “To Place in Service” or “Return to Service” duration on the product data sheets. Curing time will vary with surface temperature, air movement, humidity, and film thickness.

If the substrate is incompatible or if thickness constraints are not applicable for a non-destructive dry film thickness gauge, measurements of the coating system thickness are to be performed during application of each system component using a wet film gauge, feeler gauge, or other measurement device that can accurately measure the coating wet film thickness. These coating measurements are to be tabulated to determine the total system thickness.

To perform holiday testing, attach a ground wire from the instrument ground output terminal to the conductive substrate and ensure proper electrical contact. Test conductivity by attaching the instrument ground wire to rebar or other metallic ground permanently installed into the concrete and touch the electrode to the bare concrete. If metallic ground is not visible, the ground wire can be placed directly against a bare concrete surface and weighted with a damp cloth and sand-filled paper bag. Make contact with the exploring electrode on the conductive substrate to verify the instrument is properly grounded. If the test proves negative, determining discontinuities with a high voltage spark test will be ineffective. Under no circumstances shall the voltage be increased above the recommended voltage potential.

10.0 FINAL CURING TIME

10.1 RECOMMENDED VOLTAGES FOR HIGH VOLTAGE SPARK TESTING WITH TINKER & RASOR MODEL AP/

<table>
<thead>
<tr>
<th>TOTAL DRY FILM THICKNESS (MILS)</th>
<th>VOLTAGES (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-124</td>
<td>12,500</td>
</tr>
<tr>
<td>125-134</td>
<td>15,000</td>
</tr>
<tr>
<td>135-159</td>
<td>16,000</td>
</tr>
<tr>
<td>160-174</td>
<td>17,500</td>
</tr>
<tr>
<td>175-214</td>
<td>20,000</td>
</tr>
<tr>
<td>215-269</td>
<td>27,000</td>
</tr>
<tr>
<td>270-299</td>
<td>31,000</td>
</tr>
<tr>
<td>300-350</td>
<td>35,000</td>
</tr>
</tbody>
</table>

Holiday testing of repaired areas shall be performed using the same testing procedures as outlined above. If utilizing alternate high voltage DC holiday detectors, never exceed 100 volts DC per mil or contact Tnemec Technical Services for recommended voltage settings.

Excessive voltage may produce a holiday in the coating film.

Allow 7 days at 75°F (24°C) final cure before placing into service. Contact Tnemec Technical Service if deviations are required.

11.0 SAFETY
These products may contain solvents and/or other chemical ingredients. Adequate health and safety precautions should be observed during storage, handling, application and curing. For action regarding the potential hazards associated with these products, please refer to the container label or request a Material Safety Data Sheet from Tnemec Company, Inc. at +1-866-216-3400 or www.tnemec.com.