Tnemec Company, Inc., a leading manufacturer of high-performance protective coatings has received an award for its Severe Wastewater Analysis Test, or S.W.A.T. The test was nominated in September 2011 and then chosen as the recipient of the first Readers’ Choice Corrosion Innovation of the Year Award, presented by Materials Performance magazine.

Materials Performance, published by NACE International, invited the worldwide corrosion industry, including individuals, companies, organizations, and governments, to submit nominations for the debut of the award. Tnemec’s S.W.A.T. was among 64 innovations nominated from 17 countries. The nominations represented advances in coatings and linings, cathodic protection, materials and design, instrumentation, testing, integrity assessment, chemical treatments and other corrosion prevention and mitigation technologies. MP readers were asked to cast votes for those they felt were the top 10 nominations in January 2012.

The top 10 innovations were announced by NACE International President Oliver Moghissi at CORROSION 2012, NACE International’s annual corrosion conference and exposition, held in Salt Lake City, UT, on March 12 to 15. Mark Thomas, vice-president of marketing, accepted the award presented to S.W.A.T. on behalf of Tnemec.

“This peer recognition validates S.W.A.T. as an innovative testing protocol for evaluating protective coatings and linings for severe wastewater exposures” said Vaughn O’Dea, director of sales, Water & Wastewater Treatment. “S.W.A.T. offers the wastewater industry a mechanism for determining the suitability of protective coatings and linings for these severe exposures”.

The laboratory test method, known fully as The Standard Practice for Rapid Evaluation of Coatings and Linings by Severe Wastewater Analysis Test (S.W.A.T.), simulates a severe wastewater headspace condition. Coated steel and concrete samples are wetted with a corrosive solution and then exposed to sewer gases, including hydrogen sulfide (H2S), carbon dioxide (CO2), and methane (CH4), found as being responsible for altering barrier properties of protective coatings and linings. The test is performed under controlled conditions in an airtight chamber with a constant temperature of 150 degrees Fahrenheit where specimens are immersed into the aqueous solutions three times daily for a period of 15 minutes, then exposed to the sewer gas the balance of the time. The cyclic exposure continues for a period of 28 days.