SURFACE PREPARATION

COMMON USAGE
A two-component, fast setting, monolithic coating designed to provide a durable polyurethane lining in a single-coat, multi-pass spray application applied with plural component equipment. This high performance coating has excellent chemical, thermal shock and abrasion resistance. It is ideal for application to steel or concrete in water and wastewater treatment, secondary containment and for tank linings and bottoms. Recommended for immersion service. Note: All orders are subject to approval based on project scope, applicator qualification and appropriate equipment configuration.

COLORS
WH06 Off-White. Other colors may be available with minimum size orders, contact your Tnemec representative. Note: Colors will change when exposed to sunlight.

SPECIAL QUALIFICATIONS
Series 406-WH06 Off-White is certified by NSF International in accordance with NSF/ANSI Std. 61. Series 406-WH06 is qualified for use on the interior of potable water storage tanks and reservoirs of 50,000 gallons capacity or greater and pipes 36 inches in diameter or greater. WH06 Off-White is the only color that is NSF certified in Series 406. Series 1, 91-H2O, 94-H2O, N140, N140F, V140 and V140F are the only Std. 61 certified primers for use with Series 406. Reference the “Search Listings” section of the NSF website at www.nsfnet.org for details on the maximum allowable DFT. Conforms to AWWA C 222. Conforms to AWWA D 102 Inside Coating System No. 4. Contact your Tnemec representative for systems and additional information.

PERFORMANCE CRITERIA
Contact your Tnemec representative for specific test results.

COATING SYSTEM

| **SURFACER/FILLER/PATCHER** | Series 215, 218. Note: For more extensive repairs and additional information, contact your Tnemec representative or Tnemec Technical Service. |
| **PRIMERS** | Concrete & CMU: Series N140, N140F, V140, V140F, 201. Steel: Self-priming or Series 1, 90-97, 91-H2O, 94-H2O, N140, N140F, V140, V140F. When topcoating with Series 406, the following recoat times apply: |

<table>
<thead>
<tr>
<th>90-97/91-H2O/94-H2O (Min/Max)</th>
<th>201 (Min/Max)</th>
<th>140 (Min/Max)</th>
<th>140F (Min/Max)</th>
<th>1 (Min/Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 90°F (32°C)</td>
<td>4 hrs/14 days</td>
<td>4 hrs/3 days</td>
<td>7 hrs/7 days</td>
<td>4 hrs/7 days</td>
</tr>
<tr>
<td>At 75°F (24°C)</td>
<td>4 hrs/30 days</td>
<td>6 hrs/5 days</td>
<td>10 hrs/14 days</td>
<td>6 hrs/14 days</td>
</tr>
<tr>
<td>At 55°F (13°C)</td>
<td>4 hrs/30 days</td>
<td>8 hrs/7 days</td>
<td>24 hrs/30 days</td>
<td>24 hrs/30 days</td>
</tr>
<tr>
<td>At 55°F (2°C)</td>
<td>4 hrs/30 days</td>
<td>N/A</td>
<td>N/A</td>
<td>24 hrs/30 days</td>
</tr>
</tbody>
</table>

| **TOPCOATS** | Series 290, 297, 1080, 1081. Note: Not for use in immersion service. Note: When topcoating with Series 290, 297, 1080 or 1081, recoat time for Series 406 is 24 hours minimum/5 days maximum. |

<table>
<thead>
<tr>
<th>90-97/91-H2O/94-H2O (Min/Max)</th>
<th>201 (Min/Max)</th>
<th>140 (Min/Max)</th>
<th>140F (Min/Max)</th>
<th>1 (Min/Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 90°F (32°C)</td>
<td>4 hrs/14 days</td>
<td>4 hrs/3 days</td>
<td>7 hrs/7 days</td>
<td>4 hrs/7 days</td>
</tr>
<tr>
<td>At 75°F (24°C)</td>
<td>4 hrs/30 days</td>
<td>6 hrs/5 days</td>
<td>10 hrs/14 days</td>
<td>6 hrs/14 days</td>
</tr>
<tr>
<td>At 55°F (13°C)</td>
<td>4 hrs/30 days</td>
<td>8 hrs/7 days</td>
<td>24 hrs/30 days</td>
<td>24 hrs/30 days</td>
</tr>
<tr>
<td>At 55°F (2°C)</td>
<td>4 hrs/30 days</td>
<td>N/A</td>
<td>N/A</td>
<td>24 hrs/30 days</td>
</tr>
</tbody>
</table>

SURFACE PREPARATION

Refer to the appropriate primer data sheet for specific recommendations.

STEEL
Non-Immersion Service: SSPC-SP6/NACE 3 Commercial Blast Cleaning.
Immersion Service: SSPC-SP10/NACE 2 Near-White Blast Cleaning.
Note: When self-priming on steel, a minimum angular anchor profile of 3.0 mils is required. For all other applications, refer to the primer data sheet for recommendations.

CONCRETE
Allow new cast-in-place concrete to cure a minimum of 28 days at 75°F (24°C). Verify concrete dryness and prepare concrete surfaces in accordance with NACE No. 6/SSPC-SP13 Joint Surface Preparation Standards and ICRI Technical Guidelines. Moisture vapor transmission should not exceed three lbs per 1,000 sq ft in a 24 hour period (Reference ASTM F 1869 "Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride"). Relative humidity should not exceed 80% (Reference ASTM F 2170 "Standard Test Method for Determining Relative Humidity in Concrete using in situ Probes"). No moisture present when using a “plastic sheet test” (Reference ASTM D 4263 "Standard Test Method for Indicating Moisture in Concrete by the Plastic Sheet Method"). Abrasive blast, waterjet or mechanically abrade concrete surfaces to remove laitance, curing compounds, hardeners, sealers and other contaminants and to provide a minimum ICRI-CSP 5 or greater surface profile. Large cracks, voids and other surface imperfections should be filled with a recommended filler or surferic.

CMU
Allow new mortar to cure 28 days. Surfaces must be clean, dry, sound and free of all contaminants. Level all protrusions and mortar spatter. CMU must be filled with Series 218 or 215.

ALL SURFACES
Must be clean, dry and free of oil, grease and other contaminants.
TECHNICAL DATA

<table>
<thead>
<tr>
<th>VOLATILE ORGANIC COMPOUNDS</th>
<th>THEORETICAL COVERAGE</th>
<th>NUMBER OF COMPONENTS</th>
<th>MIXING RATIO</th>
<th>PACKAGING</th>
<th>NET WEIGHT PER GALLON</th>
<th>STORAGE TEMPERATURE</th>
<th>TEMPERATURE RESISTANCE</th>
<th>SHELF LIFE</th>
<th>FLASH POINT - SETA</th>
<th>HEALTH & SAFETY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAPS</td>
<td>1,600 ml sq ft/gal (39.3 m²/L at 25 microns) †</td>
<td>Two: Part A (iso) and Part B (resin)</td>
<td>One (Part A) to Two (Part B) by volume</td>
<td>55 gallon (208.2 L) drums (with 50 gallon fill) and 5 gallon (18.9 L) pails. (Order in multiples of 3)</td>
<td>Part A: 10.26 ± 0.20 lbs, Part B: 9.51 ± 0.20 lbs. †</td>
<td>Minimum 50°F (10°C)</td>
<td>(Dry) Continuous 250°F (121°C)</td>
<td>12 months at recommended storage temperature.</td>
<td>Part A: >350°F (177°C)</td>
<td>Non-Potable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum 90°F (32°C)</td>
<td>Intermittent 300°F (149°C)</td>
<td></td>
<td>Part B: >350°F (177°C)</td>
<td>Potable</td>
</tr>
</tbody>
</table>

Volatile Organic Compounds

- **HAPS**: 1,600 ml sq ft/gal (39.3 m²/L at 25 microns) †

Theoretical Coverage

- **Dry**: 10.26 ± 0.20 lbs, **Resin**: 9.51 ± 0.20 lbs. †

Number of Components

- Two: Part A (iso) and Part B (resin)

Mixing Ratio

- One (Part A) to Two (Part B) by volume

Packaging

- 55 gallon (208.2 L) drums (with 50 gallon fill) and 5 gallon (18.9 L) pails. (Order in multiples of 3)

Net Weight Per Gallon

- Part A: 10.26 ± 0.20 lbs, Part B: 9.51 ± 0.20 lbs. †

Storage Temperature

- Minimum 50°F (10°C), Maximum 90°F (32°C)

Temperature Resistance

- (Dry) Continuous 250°F (121°C), Intermittent 300°F (149°C)

Shelf Life

- 12 months at recommended storage temperature.

Flash Point - Seta

- Part A: >350°F (177°C), Part B: >350°F (177°C)

Health & Safety

- Non-Potable

APPLICATION

Coverage Rates

<table>
<thead>
<tr>
<th>Coverage Rates</th>
<th>Dry Mils (Microns)</th>
<th>Wet Mils (Microns)</th>
<th>Sq Ft/Gal (m²/Gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>25.0 (635)</td>
<td>25.0 (635)</td>
<td>64 (6.0)</td>
</tr>
<tr>
<td>Maximum</td>
<td>125.0 (3175)</td>
<td>125.0 (3175)</td>
<td>13 (1.2)</td>
</tr>
</tbody>
</table>

Allow for overspray and surface irregularities. Application of coating below minimum suggested film thickness may adversely affect coating performance. Reference the "Search Listings" section of the NSF website at www.nsf.org for details on the maximum allowable DFT.

Mixing

- **DO NOT AGITATE PART A.** Agitate Part B making sure no pigment remains on the bottom of the can. **DO NOT MIX PART A WITH PART B.** Use a 1 (iso): 2 (Resin) ratio plural component heated airless spray unit. **Note:** Part A must be heated to 90°F to 100°F (32°C to 38°C) prior to and during the application and the Part B heated to 110°F to 120°F (43°C to 49°C) prior to and during application. Prior to use: Keep containers tightly sealed. Components will react with moisture. For Parts A & B, attach desiccant filter through bung hole to remove moisture from air entering the drum. Cap partial drums with nitrogen gas to prevent moisture contamination.

Thinning

- **DO NOT THIN.** Thinning will adversely affect performance properties and negate NSF/ANSI Std. 61 Certification for potable water contact applications.

Application Equipment

- **HEATED PLURAL COMPONENT AIRLESS EQUIPMENT ONLY.** Contact Tnemec Technical Service for equipment recommendations.

Surface Temperature

- Minimum 20°F (-7°C), Maximum 120°F (49°C)

- The surface should be dry and at least 5°F (3°C) above the dew point. **Note:** Dehumidification is required if humidity is above 85%.

Cleanup

- Flush and clean all equipment immediately after use with Tnemec No. 2 or No. 42 Thinner, MEK or xylene. Use Tnemec potable water contact applications. NSF/ANSI Std. 61 Certification for potable water contact applications.

Note: There is a seven day return to service time for potable water immersion if Series 406 is applied direct or another approved primer is used.

Note: If the maximum recoat window has been exceeded, the Series 406 coated surface must be mechanically abraded and wiped with MEK prior to topcoating. Curing time varies with surface temperature, air movement, humidity and film thickness. Ventilation: When used in enclosed areas, provide adequate ventilation during application and cure.